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Abstract-Almost each applied mechanical question leads to some boundary value problem of mathematical
physics for the body of a complicated shape, whose boundary surface does not coincide with the coordinate
surfaces of the selected coordinate system. Mathematical physics, however, has traditionally developed
methods (separation of variables, variational, integral transformations, etc.) which are basically suitable for
bodies bounded by simple coordinate surfaces.

The finite differences technique applied to problems for bodies of complicated shape requires too large
arrays for the storing of interior data so it cannot compete with the widely used method of finite elements.

The basic idea of the Boundary-integral equation (BIE) method is to represent the unknown solution of
the given problem in terms of the surface integral, the kernel of which is the fundamental solution of the
governing operator, This method recently became rather popular in mechanics because it has some
known[l3] advantages in comparison with the finite element analysis.

The main distinction between the potential approach which is described in our paper and the BIE
method is that here instead of the fundamental solution for the kernel of the potential we are using the
Green's matrix of some domain for which the given one is only some portion. Therefore corresponding
potentials satisfy the boundary conditions on the part of the bounding surface automatically, Subsequently,
we are left only with the necessity of treating the remaining part of the boundary. This approach allows us
to solve the problems{2-6, 14-18] for bodies of very complicated geometry.

The first section of the paper contains an explanation of the basic idea of the approach. The numerical
examples which are presented in this section applied to the elastic torsion problem,

Two- and three-dimensional steady·state heat conduction problems are presented in the second section.
There one can find, for instance, the case of the layered strip with arbitrary holes.

The last section contains a description of the algorithm for constructing of tbe Green's matrix for the
sandwich type of elastic body. Some numerical examples for the homogeneous and layered strip with holes
of various shapes are shown.

Other possible applications of the potential method described are briefty reviewed in the conclusion of the
paper.

I. THE BASIC IDEA OF THE APPROACH

Consider a case of the elastic torsion of the prizmatic bar. This simple mechanical problem is
chosen in order to introduce the main ideas of the general approach to be used. As it is well
known, the governing equations for the torsion of a prizmatic bar of multiconnected cross-

n

section L = U Lj (Lo-the outer contour) can be written as
j~O

(l.l)

(i = 0, 1,2, ... , n) (1.2)

where U = U(Xh X2) presents a stress function, and one of the constants C; may be fixed
arbitrarilY, the remaining constants then being determined by enforcing the condition of
single-valuedness on the function U(x), X2).

For the simple connected domain, fi problem (l.l) and (1.2) can be formUlated as an internal
Dirichlet problem for the stress function which vanishes on the boundary Lo, i.e.

UILo=O. (1.3)

A simple way to represent the solution of the problem (1.1) and (1.3) by means of the
classical (see, e.g. [1]) harmonic single-layer potential, is to express the stress function as:

U(XI, X2) = v(xJ, X2) + w(xt, X2)
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(1.4)
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where

and
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V(XI, X2) = 2 JJIn r dO({I, 6)
n

W(XI, X2) = La In rJL({I, {2) dLo({I, {2)

(1.5)

(1.6)

Here, JL = JL({I, {2) is the unknown continuous function (density of the potential (1.6» which
may be determined by satisfying condition (1.3), point (XI, X2) belongs to the domain nand
point ({i, {2) belongs to the boundary Lo.

Insofar as Inr is the principal solution of the Laplace equation, eqns (1.1) and (1.3) will be
satisfied by the solution (1.4) provided the integral equation

(1.7)

is solved. Here, vLixI, x2)-values of the integral (1.5) on the line Lo-ean be accurately
obtained by anyone of several rules of approximate integration. The integral eqn (1.7) may then
be numerically integrated since the kernel Inr has an integrable singularity.

The above approach to solving such mechanical problems is well known, e.g. Ref. [13]. But
sometimes this approach can be improved so as to lead to a more compact numerical
procedure.

Thus, we begin by assuming the contour Lo to be divided in two parts, Ao and r, in such a
way that Green's function g(XI, X2; {I, {2)t is known for the domain 0' (see Fig. 1), for which n
is some portion.

The solution of problem (1.1), (1.3) as given by (1.4) may then be re-written as

(1.8)

and

(1.9)

where JL({i, {2) once again is the unknown continuous function to be determined by satisfaction
of the boundary condition (1.3).

It is to be noted that since eqns (1.8) and (1.9) contain Green's function as their kernels, the
solution (1.4) vanishes on the line r. Upon invoking the Boundary condition (1.3), we are then
led to the following integral equafion at points (XI, X2) that lie on the A:

(1.10)

Fig. 1.

tWe will consider here Green's function of the Dirichlet problem.
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Here, VA(XI, x2}--values of the integral (1.8) on the line A-can be computed by any rule of
approximate integration.

Upon solving this equation for the potential density function p,(et. e2), the solution of the
original problem obtains.

Figure 2 shows some results calculated by the algorithm described above. The given domain
here is a square whose sides are equal to 2a and with quarter-circle, corner cut-outs of radius
R. The Green's function for the square was employed as the kernel of integrals (1.8) and (1.9).

The maximum shear stresses 'T are shown in Fig. 2(b) for RIA = 0.5. Appearing on the left of
this figure are the maximum shear stresses which develop on the contour of the given
cross-section; on the right appear those stresses acting at internal points of the domain.
Variation of the maximum shear stresses 'TA and 'TB with the ratio RIa at the two contour points
A and B of greatest interest are shown in Fig. 2(c). It should be noted that 'TA = 'TB when the
RIa = 0,31; thus, there are eight points on the contour of this cross-section which have equal
maximum shear stresses. Moreover, the shear stress 'TA has its maximum value when RIa = 0.47
slightly larger than the maximum value of 'TB which occurs when RIa = 0 (square without
cut-outs).

The approach described may also be used for multiple connected cross-sections, it is
convenient even for compound cross-sections. Figure 3, for example, shows the distribution of the
maximum shear stresses appearing on the contour of the compound rectangular cross-section
with elliptical cut-outs whose boundaries cut the interface between two materials. The upper
material here is half as stiff as the lower one.

2. POTENTIAL METHOD APPLIED TO STEADY-STATE HEAT CONDUCTION PROBLEMS

A variant of the Green's function method is used here to solve steady-state heat conduction
problems in multiple-connected bodies involving complicated geometries. An algorithm for
constructing the Green's matrix of a layered strip is described and numerical results for two
and three-dimensional particular cases are presented. This approach is general for systems of
elliptical partial differential equations in mechanics and it has been employed in the past to
obtain numerical solutions of various mechanical problems for bodies with intricate shapes.

The particular problems considered here will be used merely as examples to demonstrate the
application of the method for steady-state heat conduction boundary value problems.

Statement of the problem
Consider a two-dimensional, n-Iayered strip with an arbitrary hole L, and assume that the

110

b

12° r=""'kJ""f--F"~r--1
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0,2 0.4 0,6 0,8

a c
Fig. 2. Elastic torsion of the square with quarter-circular CUI-outs.
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78

290 L--'--~~

Fig. 3. Maximum shear stresses on the contour of the composite (02/0, = 2) rectangular cross-section with
two elliptical cut-outs.

thermal conductivities Ak (k = I, 2, ... , n) in each of the n layers are
functions of the coordinate x (see Fig. 4).

The temperature U in the strip will satisfy the following relations:

a ( aUk) aZUk- ftk(X)- +Ak(X)-z=fk(X,y) (k=1,2, ... ,n)
ax ax ay

aUkl = 0
ay Y=:!:"" '

BUkk = Q(x, y)

known continuous

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

where Uk = Uk(X, y) is the unknown temperature of the k-th layer, Aj, A z and B are linear
differential operators that depend on the boundary conditions, and Q(x, y) and fk (x, y) are given
continuous functions. In the next section the Green's matrix for the relations (2.1)-(2.4) will be
constructed in order to obtain the solution of the problem (2.1)-(2.5) by means of an integral
representation in which the Green's matrix is the kernel.

Construction of the Green's matrix
It will be assumed that problem (2.1)-(2.5) has symmetry about the x-axis and that the

functions Uk(X, y) and fk(X, y) can be represented in terms of Fourier integrals

1 L'" 1 L""Uk(X, y) = - Uk(X, w) cos wy dw; /k(x, y) = - Fk(X, w) cos wy dw.
~ 0 ~ 0

a,

(L )

an

y

X
Fig. 4.
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Substitution of (2.6) into (2.1)-(2.4) leads to the following system of ordinary differential
equations.

with the boundary conditions

(2.7)

A I.,Ullx=ao ::; 0, (2.8)

(2.9)

A set of linearly independent particular solutions of the homogeneous system corresponding
to eqns (2.7) can be obtained numerically by any suitable method (as, for instance, Euler or
Runge-Kutta). The Green's matrix for the relations (2.7)-(2.9)

(2.10)

may be obtained from this set of linearly independent particular solutions by employing a
known procedure as, for example, that described and used in references [2,5, 16]. For n layers
in the strip the order of the Green's matrix is also n. On this basis the solution of (2.7)-(2.9) may
be expressed as

where U(x, CtJ) and FU, (I) are vectors with components Udx, CtJ) and Fk(E, CtJ), respectively.
Using the inverse Fourier transformation for the last equation

and substituting the resulting expression into the first of (2.6) and then reversing the order of
integrations yields

(2.11)

where u(x, y) and /U, 11) are vectors with components Uk(X, y) and /k(e, 11), respectively.
Assuming that the solutions of (2.1)-(2.4) are unique, the kernel of the double integral in (2.11) is

the Green's matrix G(x, Y; ~) of the given problem. Thus

2L""G(x, y; e, 11) ::;; g(x, g; (I) cos (l)y cos (1)11 dCtJ.

Algorithm 0/ computation and numerical examples
Consider for example, the case in which the operator B is unity, meaning that the

temperature is specified on the contour L. Represent the solution of (2.1)-(2.5) by the following
sum[l6]

here

u(x, y)::; v(x, y) + w(x, y) (2.13)

(2.14)
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w(x, y) = LG(x, y;~, 1/)h(~, 1/) dL(~, 1/). (2.15)

(2.16)

The kernel G(x, y; ~,1/) of the representations above is the Green's matrix described in the
previous section. Function h(~, 1/) is the unknown density of the potential (2.15), which can be
determined from the requirement that (2.13) satisfies the boundary conditions (2.5). On this
basis we obtain

Q(x,y)-V(x,y)= LG(x,y;~,1/)h(~,1/)dL(~,1/)

which is a Fredholm integral equation for h(~, 1/). The term v(x, y) is equal to the value of the
integral (2.14) on the line L. After the integral equation is solved for the potential density h(~,

1/), the solution of (2.1}-(2.5) is immediately obtained from (2.13). The described algorithm was
applied to a two-layered strip with a tunnel-shaped hole for the following data: !(x, y) == 0,
Q(x, y)== 1, B = At == 1 and A 2=a/ax + 1. Figure 5(a) gives the variation of the thermal
conductivities of the given materials transversely to the layers.

The previously mentioned set of the linearly independent particular solutions of the
homogeneous system (2.7) can in this case be obtained in closed form because of the
exponential representations of the Ak coefficients. The integral eqn (2.16) was solved by
expressing the integrals as finite sums by means of the trapezoidal rule. The locations and
spacing of the grid points must be generally determined by taking into account the size and
shape of the hole L. In this example we used a set of 24 uniformly spaced grid points. The
improper integral in (2.12) converges rather fast, and it could be calculated with sufficient
accuracy without any difficulties. The resulting temperature field for the case considered is shown
in Fig. 5(b).

The three-dimensional case of a homogeneous layer with the tunnel S of an elliptical
cross-section is shown in Fig. 6. The boundary conditions here are specified as

ulx=o = 0, (au + u) = 0, ul s = COS
32

Z
ax FI

,--r---X

eX

x a b
Fig. 5. Temperature field of the two-layered strip with a tunnel-shaped hole.

y

~
X

Fig. 6. Three-dimensional problem of the steady-state heat conduction for the layer with an elliptical tunnel.
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Instead of the artificial boundary conditions on the surface S one could specify any condition
that is more realistic from a physical point of view. The artificial condition was selected here
only for the purpose of making the example simpler. The three-dimensional problem considered
was reduced to a two-dimensional problem by means of Fourier series in the z direction, and
subsequently the algorithm described above was employed. From the standpoint of calculations
such an approach to solve three-dimensional problems does not require much additional work
except for computer programming.

3. APPLICATION TO THE PROBLEMS OF PLANE THEORY OF ELASTICITY

The Green's matrix approach described in the previous sections is used here to obtain the
solutions of two-dimensional elasticity problems of an infinite strip with periodically spaced
holes. Numerical results are presented and generalizations to the case of a layered strip
obtained.

Attempts to obtain elasticity solutions of boul).dary value problems for bodies of com
plicated shapes usually result in great numerical difficulties, which can be successfully over
come only for particular situations.

Let us consider a domain in which complexity arises because part of the bounding surfaces
do not coincide with the coordinate surfaces of the selected coordinate system. Such a situation
occurs, for example, in the plane elasticity problem of a strip with holes, the case in which the
holes are circular having been solved in Ref. [7} by using the technique of conformal mapping.
Numerical procedures, like the widely used finite element method, can also be employed to
solve such problems.

In this section of our paper, use is made of the Green's matrix method, which reduces the
problem to the solution of Fredholm's integral equations. The procedure is similar to that
employed in the previous sections and successfully competes with finite element analysis in
terms of computer time and accuracy of the final results.

Statement 0/ the problem
Consider an elastic strip, with a row of periodically spaced arbitrary holes r (see Fig. 7),

resting on a frictionless rigid foundation. Assume that traction boundary conditions are
prescribed on the surface x = 0 and on the contours r. It is quite possible to consider any other
set of boundary conditions, but this detail will be described later.

The displacement formulation of the boundary-value problem in the region .0 (see Fig. 7)
follows:

(
a2 a2 ) _

L ax2 ' al' A, II- U(x, y) =F(x, y)

B. (;)u(a, y) =eiJt(y)

(3.1)

(3.2)

dJ
I

b
r-----------r:>"l~..,..,..".~,..,.,.------........._y
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( a a ) -B -. -, A, JL Ulr = $(x, y)
ax ay .

(3.3)

(3.4)

where U(x, y) and F(x, y) are the displacement and body force vectors, respectively; the
matrix-operator L is

(3.5)

A, JL are the Lame constants; V2 is Laplace's operator. According to our assumptions the
column $\(y) must be equal to zero, and the operators B\, B2 and B3 can be written as follows

o ) (A +2JL)~. B = ax
a' 2- a

JL- JL-
ax ay

B=(~ 0)
3 0 I' (3.6)

Dividing equations (3.1) and boundary conditions (3.2) and (3.4) by JL and letting u = 1+AI JL,
we obtain the following

(
a2 a2

L ax2'd/,u)=F(X,y)

B1C:)U(a, y) = 0

B2C:, ~, u)U(O, y) =$2(y)

B3C: )U(X, ±b) = 0

B(~, ~, u)Ulr = $(x, y).
ax ay

0.7)

(3.8)

(3.9)

(3.10)

(3.11 )

It is necessary to note that the left-hand sides of the above contain only one parameter u
instead of two parameters A, JL in the preceding formulation. This proves to be very convenient
for a parametric study.

Constructing the Green's matrix
Consider now eqns (3.7), boundary conditions (3.8), (3.10) and the homogeneous condition

corresponding to (3.9)

B2(~'~' u)U(O,y)=o.
ax oy

(3.12)

We now proceed to construct Green's matrix of (3.7), (3.8), (3.10) and (3.12) for the rectangle
region n. For this purpose, represent vectors U(x, y) and F(x, y) by the series
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U(x, y) == L Qn(y)Un(x); F(x, y) == L Qn(y)Fn(x)
n=O n=O
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(3.13)

Qn(y) = (COS lIy . 0 ) and
o sm lIy

n7T
11=-

b
(3.14)

It is quite clear that such a representation of the vector U(x, y) satisfies the boundary
conJitions of eqn (3.10). Substituting (3.13) into (3.7), (3.8), (3.12), we obtain the system of

ordinary differential equations

with boundary conditions

Bln(d~)Un(a) == 0

B2n(:x, 0') U(O) = 0

Here

(a~1),\
dx /

It is not difficult to show that the vectors

(3.15)

(3.16)

(3.17)

(3.18)

Unl(X) = ( c~sh IIX );
-smh IIX

(
sinh IIX )

Udx) = h;
-cos IIX

TT ( ) _ ( -O'IIX sinh IIX )
Un3 X -

0'11 cosh IIX +(0' +2) sinh IIX

U. ( ) _ ( -O'IIX cosh IIX )
n4 X -

O'IIX sinh IIX +(0' +2) cosh IIX
(3.19)

are linearly independent solutions of the homogeneous system of eqns (3.15). Consequently, the
general solution of eqns (3.15) can be written as

(3.20)

where Pn = (Unj(x» is a 2 x 4 matrix whose columns are the vectors of eqn (3.19) and Cn(x) is a
column of unknown functions.

In accordance with Lagrange's method of variation of arbitrary constants, we obtain the
system of linear equations,

where

P~(X) . C~(x) = F~(x)

P*( _ (P,,(X») d * _( 0 )
nX)-\p~x) an F,.{x)- Fn(x) .

(3.21)

(3.22)
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Since P~(x) is nonsingular,

or
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C(X) = (p~(X))-1 . F~(x)

(3.23)

where Rn(x) is a 4x2 matrix whose columns are the third and fourth columns of the matrix
(p~(x)rl.

Integrating (3.23) gives us

(3.24)

Upon substituting this expression into (3.20), we obtain

where

Sn(X,~) = Pn(X) . RnW.

(3.25)

(3.26)

Hence, when satisfying the boundary conditions (3.16), (3.17) we obtain the following system of
linear algebraic equations for the vector Dn

(3.27)

The first and the second rows of the matrix Tn are given by the expression

the third and the fourth rows-by the expression

The first and the second elements of the column l/Jn are zero, and the third and the fourth are
given by

where

It can thus be seen that one can readily consider boundary conditions other than those given by
(3.8) and (3.12). Only the expressions for the elements of the matrices Tn and l/Jn would be
affected. The algorithm described here remains unchanged, and is independent of the boundary
conditions on the edges x = 0, a.

Let us now write down the solution of the system (3.27) as follows
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(3.28)

where W,,(~) = T,,-IZ,,(a,~) is a 4x 2 matrix. Substituting this expression for the vector D" into
(3.25) we obtain

(3.29)

or

(3.30)

where

If we now express F"W by the Fourier's-Euler's Expansions in accordance with (3.13) and
substitute (3.30) into the first of (3.13) it is possible to express the solution of the problem
defined by eqns (3.7), (3.8), (3.10) and (3.12) as follows

U = ff [~ ~o Q,,(y)g,,(x, e)Q,,(.,,) ]F(e, T/) de d."

or

(3.31)

where the kernal G(x, y, e, T/) of this representation is Green's matrix for the operator L in the

. {1,n=O}
region n, and the Neumann factor E" = 2, n > 0 .

Description of the algorithm and generalizations
Let us now consider problem (3.7H3.1I), and as an example assume that the operator B is

unity, that is, the displacements are specified on the contour f.
It is quite clear that we can consider the boundary condition (3.12) instead of (3.9) since it is

always possible to reduce such a problem to one described by eqns (3.7), (3.8), (3.10), (3.11) and
(3.12) (which we will refer to as Problem (A» by subtraction of some particular solution. We seek
(see, for instance, [16]) the solution to Problem (A) in the following form

U(x, y) = U1(x, y) + Uz(x, y).

Ub, y) is defined in (3.31) and Uz(x, y) can be written as

Uz(X, y) = LG(x, y, e, .,,)/L(e,.,,) df(E, 11)

(3.32)

(3.33)

where /L(e, .,,) is the potential density function.
The functions of eqn (3.32) satisfies (3.7), (3.8), (3.10) and (3.12), since the kernels of (3.31)

and (3.33) are Green's matrix for the operator L in the region n. Finally, upon invoking
boundary conditions (3.11), we are led to the following system of integral equations at points (x,
y) that lie on f,

(3.34)

SS Vol. 13 No. 1I-D
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Upon solving these equations for the potential density function J.t(~, 1j), we immediately obtain
the solution of Problem (A) from (3.32).

Equation (3.34) is solved by expressing the integrals as finite sums by means of the
trapezoidal rule. The locations and spacing of the grid points must be determined by consider
ing the size and shape of the hole r. In our first example we used a set of 24 points. For Green's
matrix we employed ten terms of the corresponding Fourier series.

It has been determined from detailed calculations, that further increasing the amount of grid
points and the number of terms of the series does not result in any significant change in the final
results. Thus, we conclude that the convergence of the series in (31)-(34) is sufficiently fast.

Such an algorithm can be generalized for the nonhomogeneous strip with holes, if the elastic
material properties are functions of the x variable. Nothing in the algorithm has to be changed
except for the vectors (3.19). In the general case these vectors can be obtained approximately
by any (for instance, Euler or Runge-Kutta) method for Couchy's problems for systems of
ordinary differential equations. Such an approach had been used in our third example, where we
had considered a two-layered sandwich strip.

Numerical examples
As a first example consider the homogeneous isotropic strip with a periodic distribution of

two closely-spaced elliptical clamped holes under uniform pressure on the upper edge. In Fig. 8,
we show the state of deformation of such a strip.

A more difficult case, is the second example where we considered trapezoidal holes with
smooth corners. Such hole shapes can be found, for example, in mining and subway con
struction, etc. Here contour r is free and the upper edge is loaded by a local normal load which
is represented by the expression

2 1Ty
X(y) = Xocos n 2b

with n = 32. We see that such a form approximates a concentrated load. Figure 9(a) shows the
resulting deformation state, while the maximum shear stress T and the principal normal stresses
O't, 0'2, are shown in Figs. 9(b-d). It is interesting to note the stress concentration in the
neighborhood of the smooth corners of the contour r and at the point which is situated on the
contour r exactly under the load point. As expected, we can also see an essentially unstressed
zone below the hole.

As a final example, we show the results for the two-layered sandwich strip having the same
hole shape. The upper layer is half as stiff as the lower one, the hole is clamped and the upper
edge is loaded by a normal uniformly distributed pressure. Some results of this case are given in
Fig. 10, where we have plotted the distributions of contour normal and tangent reactions.
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Fig. 8. Deformation field for two closely-spaced elliptical clamped holes.
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Thus, in this section we have demonstrated that our variant of the surface integral method
can be successfully applied to solve rather complicated elasticity problems.

Conclusion
In the previous sections of the paper the basic idea of the potential approach has been

discussed, the algorithm for construction of the Green's functions (matrices) presented, and the
method of solution of some problems of applied mechanics were developed by means of the'
version of the surface integral method indicated.

It should be noted that the main practical advantage of the technique discussed here is the
saving of the computer time. Comparison with the finite element program NASTRAN, which
was also used to solve the problem mentioned in the third section showed that the program
developed on the basis. of the author's approach was ten times faster for the same level of
accuracy of the final results.

The variety of possible applications of this method includes many other problems in applied
mechanics. Some of them have already been considered by various authors (see, for instance,
[2-6, 8, 9, 11, 12]). Possible application of the methods described here include, firstly, the
problems of transient heat conduction which could be solved on the basis of potential
representation of the unknown functions. Such problems would also include bodies with
moving boundaries. A second very interesting group of applications which could be attacked by
the approach indicated are vibration problems for compound beams, plates and shells. Ad
ditionally, it appears that buckling problems including thermo-buckling phenomena also fall
within the range of the techniques presented.
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